

Advanced Reactor Design

Week 12 Stability of Flow Reactors

Saba A. Gheni, Ph.D.

Chemical Engineering Department

ghenis@tu.edu.iq

كلبة الهندسة - COLLEGE OF ENGINEERING

Introduction

• This presentation covers equilibrium conversion, optimal feed temperature, interstage cooling, and the application of energy balance principles in reactor design.

كلية الصندسة - COLLEGE OF ENGINEERING

Topics to Be Addressed

- 1. Equilibrium Conversion
- 2. Effect of Temperature on Conversion
- 3. Optimal Feed Temperature for Exothermic and Endothermic Reactions
- 4. Interstage Cooling Strategies
- 5. Nonadiabatic Reactor Operation and Stability
- 6. Energy Balance for PFR and CSTR Reactors
- 7. Multiple Steady States and Reactor Stability

كلية الصندسة - COLLEGE OF ENGINEERING

Objectives

- 1. Understand the equilibrium conversion and its dependence on temperature.
- 2. Learn how feed temperature optimization impacts conversion.
- 3. Analyze the importance of interstage cooling in reactor operation.
- 4. Examine reactor stability and energy balance considerations.
- 5. Apply theoretical principles to practical reactor design.

كلية الصندسة - COLLEGE OF ENGINEERING

Review: Equilibrium Conversion X_{Ae}

Review: X_{Ae} and Temperature

 $X_{Ae} = \frac{1}{\frac{1}{K_{C}(T_{2})}} exp\left[\frac{\Delta H^{\circ}_{RX}(T_{R})}{R}\left(\frac{1}{T} - \frac{1}{T_{2}}\right)\right] + 1$ Clicker question material Exothermic & $\Delta C_P = 0$: $\Delta H^{\circ}_{RX}(T_R) < 0$, when $T \uparrow exp \left| \frac{\Delta H^{\circ}_{RX}(T_R)}{R} \left(\frac{1}{T} - \frac{1}{T_2} \right) \right| \uparrow \& X_{Ae} \downarrow$ Makes sense from Le Chatelier's principle $A \square B + heat$ Exothermic rxn produces heat \rightarrow increasing temp adds heat (product) & pushes rxn to left (lower conversion) Endothermic & $\Delta C_{p} \approx 0$: $\Delta H^{\circ}_{RX}(T_{R}) > 0$, when $T \uparrow exp \left| \frac{\Delta H^{\circ}_{RX}(T_{R})}{R} \left(\frac{1}{T} - \frac{1}{T_{2}} \right) \right| \downarrow \& X_{Ae} \uparrow$ Makes sense from Le Chatelier's principle $A + heat \square B$ Heat is a reactant in an endothermic rxn \rightarrow ciocregeiroftencanetrancactant (heat) & pushes rxn to right (higher conversion) جامعة تكريت - Tikrit University

Review: Optimum Feed Temperature

For reversible, exothermic rxns, optimize feed temperature to maximize

High T_0 : moves $X_{A,EB}$ line to the right. Rxn reaches equilibrium fast, but low X_A

Low T_0 would give high $X_{A,e}$ but the specific reaction rate k is so small that most of the reactant passes through the reactor without reacting (never reach $X_{A,e}$)

Review: Interstage Cooling

- Adiabatic operation of each reactor simplifies the energy balance
- Higher feed temp- reaction reaches equilibrium quickly but $X_{A,e}$ is low
- Lower feed temp-higher X_{A,e} but reaction rate is too slow to be practical
- Cooling between reactors shifts $X_{A,EB}$ line to the left, increasing X_A

Review: Endothermic Reactions

The equilibrium conversion increases with increasing temperature, so use interstage heating to increase the conversion

- 1. T changes with distance down reactor-<u>differential form of EB</u> must be used
- 2. <u>Multiple steady states</u>: more than one set of conditions satisfies both the energy balance & mole balance

كلبة الهندسة - COLLEGE OF ENGINEERING

- c) Use stoichiometry to obtain $-r_A$ as a function of X_A
- d) Calculate: $X_A = V = F_{A0} \int \frac{dX_A}{-r_A(X_A, T)}$ may use numerical methods **COLLEGE OF ENGINEERING - المنحسة** المنحسة Tikrit University - جامعة تكريت - FA(X_A, T)

Steady-State PFR/PBR w/ Heat Exchanger

Heat is added or removed through the cylindrical walls of the reactor

$$\dot{Q} = U\Delta A (T_a - T) = Ua (T_a - T) \Delta V$$

$$T_a$$

$$F_{A0}$$

$$T_b$$

$$\Sigma F_i H_i$$

$$T_b$$

$$\Sigma F_i H_i$$

$$T_e$$

$$a = \frac{A}{V}$$

Heat exchange area per volume of reactor

Energy balance on small volume of SS PFR:

$$\Delta \dot{Q} - \dot{W}_{s} + \sum F_{i}H_{i}|_{V} - \sum F_{i}H_{i}|_{V+\Delta V} = 0$$

Plug in Q: $\rightarrow Ua(T_a - T)\Delta V - \dot{W}_s + \sum F_i H_i |_V - \sum F_i H_i |_{V+\Delta V} = 0$

Take limit as
$$\Delta V \rightarrow \infty$$
: $\rightarrow Ua(T_a - T) - \frac{d\sum(F_iH_i)}{dV} = 0$

COLLEGE OF ENGINEERING - באוליביאיגי $A_{i}(\underline{J}_{e} - T) - \frac{\sum dF_{i}}{dV}H_{i} - \sum F_{i}\frac{dH_{i}}{dV} = 0$ Tikrit University - جامعة تكريت -

TEB for PFR/PBR w/ Heat Exchanger

Substitute the differentials: $\frac{dF_i}{dV} = r_i = v_i (-r_A) \text{ and } \frac{dH_i}{dV} = C_{pi} \frac{dT}{dV}$ $\rightarrow Ua(T_a - T) - \sum H_i v_i (-r_A) - \sum F_i C_{Pi} \frac{dT}{dV} = 0 \qquad \sum v_i H_i = \Delta H_{RX}$

 $\rightarrow Ua(T_a - T) - \Delta H_{RX}(-r_A) - \sum F_i C_{Pi} \frac{dT}{dV} = 0 \quad \text{Solve for } dT/dV:$

 $\xrightarrow{COLLEGE} OF_{CRVGINEERING} \xrightarrow{AH_{RX}(-r_A) - Ua(T_P - T)}_{AV} \rightarrow \frac{dT}{dV} = \frac{\Delta H_{RX}(r_A) + Ua(T_a - T)}{\sum F_i C_{Pi}}$ Tikrit University - جامعة تكريت - Tikrit University - Elastic relations

Liquid Phase Reaction in PER

B liquid phase rxn carried out in PFR; $\dot{W}_{S} = 0$ & pure A enters the PFR $A \square$ $\frac{dX_A}{dV} = \frac{-r_A}{F_{A0}}$ ✓ Mole balance $-\mathbf{r}_{A} = \mathbf{k} \left(\mathbf{C}_{A} - \frac{\mathbf{C}_{B}}{\mathbf{K}_{C}} \right)$ with ✓ Rate law $\mathbf{k} = \mathbf{k}_{1} \exp\left[\frac{\mathsf{E}}{\mathsf{R}}\left(\frac{1}{\mathsf{T}_{1}} - \frac{1}{\mathsf{T}}\right)\right] \quad \mathsf{K}_{\mathsf{C}}(\mathsf{T}) = \mathsf{K}_{\mathsf{C}}(\mathsf{T}_{2}) \exp\left|\frac{\Delta \mathsf{H}^{\circ}_{\mathsf{RX}}(\mathsf{T}_{\mathsf{R}})}{\mathsf{R}}\left(\frac{1}{\mathsf{T}_{2}} - \frac{1}{\mathsf{T}}\right)\right|$ $C_{A} = C_{A0}(1 - X_{A})$ $C_{B} = C_{A0}X_{A}$ ✓ Stoichiometry $\frac{\mathrm{dX}_{\mathrm{A}}}{\mathrm{dV}} = \frac{\mathrm{k}\left[1 - \mathrm{X}_{\mathrm{A}} - \mathrm{X}_{\mathrm{A}}/\mathrm{K}_{\mathrm{C}}\right]}{\upsilon_{\mathrm{0}}}$ ✓ Combine $\left| \Delta H^{\circ}_{RX}(T_R) + \Delta C_P(T - T_R) \right| (r_A) + Ua(T_a - T)$ ✓ Energy balance $F_{AO}(\Sigma \Theta_i C_{Pi} + \Delta C_P X_A)$ dV Solve these equations simultaneously with an ODE solver (Polymath) If this were a gas phase rxn w/ pressure drop, change stoichiometry accordingly & include an equation for COLLEGE OF ENGINEERING - خلبة الهندسة ddP/dW جامعة تكريت - Tikrit University

Review: Nonisothermal CSTR

Isothermal CSTR: feed temp = temperature inside the CSTR <u>Case 1</u>: Given $F_{A0,} C_{A0}$, A, E, C_{pi} , H°_I, and X_A, calculate T & V

- Solve TEB for T at the exit ($T_{exit} = T_{inside reactor}$) a)
- Calculate $k = Ae^{-E/RT}$ where T was calculated in step a b)
- Plug the k calculated in step b into the design equation to calculate V_{CSTR} C)

Case 2: Given F_{A0.} C_{A0}, A, E, C_{pi}, H°_I, and V, calculate T & X_A

- Solve TEB for T as a function of X_A a)
- Solve CSTR design equation for X_A as a function of T (plug in k = Ae^{-E/RT}) b)
- c) Plot $X_{A,EB}$ vs T & $X_{A,MB}$ vs T on the same graph. The intersection of these 2 lines is the conditions (T and X_A) that satisfies the energy & mass balance

Intersection is T and X_A that satisfies both equations

- Plot of $X_{A,EB}\,vs$ T and $X_{A,MB}\,vs$ T
- Intersections are the T and X_{A} that satisfy both the mass balance and energy balance
- Multiple sets of conditions are possible for the same rxn in the same reactor with the same inlet conditions! Reactor must operate near one of these steady

COLLEGE OF ENGINEERING - خلبة المنحسة states- this requires knowledge of their stability!

Consider a jacketed CSTR with constant heat capacity, negligible shaft work, $\Delta C_p=0$, first order kinetics, all feeds at the same temperature ($T_{i0}=T_0$), constant T_{i0} jacket, and an overall heat transfer coefficient

$$\dot{Q} = UA(T_a - T)$$

طريقك إلى النجاح

$$\mathsf{TEB}: \mathbf{0} = \dot{\mathbf{Q}} - \mathsf{F}_{A0} \sum_{i=1}^{n} \Theta_i C_{p,i} \left[\mathsf{T} - \mathsf{T}_{i0} \right] - \Delta \mathsf{H}_{RX}(\mathsf{T}) \mathsf{F}_{A0} \mathsf{X}_A$$

Substituting for $\dot{Q} = UA(T_a - T)$ and $\Delta H_{RX}(T) = \Delta H_{RX}^{\circ}(T_R)$ since $\Delta C_P = 0$

$$\rightarrow 0 = UA(T_a - T) - F_{A0} \sum_{i=1}^{n} \Theta_i C_{p,i} [T - T_{i0}] - \Delta H_{RX}^{\circ}(T_R) F_{A0} X_A$$

Bring terms that remove heat to other side of equation:

$$\rightarrow F_{A0} \sum_{i=1}^{n} \Theta_{i} C_{p,i} [T - T_{i0}] - UA (T_{a} - T) = -\Delta H_{RX}^{\circ} (T_{R}) F_{A0} X_{A}$$

$$\rightarrow \sum_{i=1}^{n} \Theta_{i} C_{p,i} [T - T_{i0}] - \frac{UA (T_{a} - T)}{F_{A0}} = -\Delta H_{RX}^{\circ} (T_{R}) X_{A}$$

$$Heat removed term \equiv R(T) \qquad Heat generated term \equiv G(T)$$

$$Mathematical term = G(T)$$

$$College of engineering - the term = t$$

Even More reference forms set senerated term = G(T)

$$\int_{i=1}^{n} \Theta_{i}C_{p,i}[T - T_{i0}] - \frac{UA(T_{a} - T)}{F_{A0}} = -\Delta H_{RX}^{\circ}(T_{R})X_{A}$$

$$C_{P0} = \Sigma \Theta_{i}C_{Pi} \qquad V = \frac{F_{A0}X_{A}}{-r_{A}} \rightarrow \frac{-r_{A}V}{F_{A0}} = X_{A}$$
Substitute $\rightarrow C_{p0}[T - T_{i0}] - \frac{UA(T_{a} - T)}{F_{A0}} = -\Delta H_{RX}^{\circ}(T_{R})\left(\frac{-r_{A}V}{F_{A0}}\right)$
More substitutions: $\kappa = \frac{UA}{C_{p0}F_{A0}} T_{c} = \frac{T_{0}F_{A0}C_{p0} + UAT_{a}}{UA + C_{p0}F_{A0}} = \frac{\kappa T_{a} + T_{0}}{1 + \kappa}$

$$\Delta H_{RX}^{\circ} = \Delta H_{RX}^{\circ}(T_{R})$$
Heat $R(T) = C_{p0}(1 + \kappa)[T - T_{c}]$ Heat $R(T) = C_{p0}(1 + \kappa)[T - T_{c}]$ Heat $G(T) = -\Delta H_{RX}^{\circ}\left(\frac{-r_{A}V}{F_{A0}}\right)$
Tikrit University - c_{yy} is a set.

Heat Removal Term and T_o

R(T) line has slope of $C_{PO}(1+\kappa)$

When T_0 increases, slope stays same & line shifts to right

كلبة الهندسة - COLLEGE OF ENGINEERING جامعة تكريت - Tikrit University

طريقت إلى أنجاح $\kappa = UA/C_{p0}F_{A0}$ $T_{c} = \frac{\kappa T_{a}^{-1}}{1+\kappa}$

Increase k For $T_a < T_0$

R(T)

When κ increases from lowering F_{AO} or increasing heat exchange, slope and x-intercept moves

 $T_a < T_0$: x-intercept shifts left as $\kappa\uparrow$ $T_a > T_0$: x-intercept shifts right as $\kappa \uparrow$ $\kappa=0$, then $T_c=T_0$ $\kappa=\infty$, then $T_c=T_a$

- Suppose a disturbance causes the reactor T to drift to a T between $SS_1 \& SS_2$
- Suppose a disturbance causes the reactor T to drift to a T between $SS_2 \& SS_3$
- Suppose a disturbance causes the reactor T to drop below SS_1
- Suppose a disturbance causes the reactor T to rise above SS₃

COLLEGE OF ENGINEERING - COLLEGE OF ENGINEERI

Multiple Steady States and T₀

- Changing the inlet T will shift the steady state temperature (T_s)
- Notice that the number of steady state temperatures depends on T_0

كلية الصندسة - COLLEGE OF ENGINEERING

Slight increase in T above T_{S,green} causes reactor T to jump to T_{S,cyan}

Runaway Reaction

طريقك إلى انداح OUR WAY TO SUCCESS

Ignition temperature is very important: once T₀ exceeds T_{ignition}, <u>transition to the upper</u> <u>steady state will occur</u>

Т

- undesirable
- dangerous

R(T), G(T)

Runaway reaction R(T) only intersects with upper steady state

كلية الصندسة - COLLEGE OF ENGINEERING

Summary

- In this presentation, we explored the key factors affecting equilibrium conversion, optimal feed temperature, and interstage cooling.
- We also reviewed the energy balance principles for different reactors and discussed the importance of reactor stability.
- Understanding these concepts is essential for optimizing reactor performance and safety.

كلية الهندسة - COLLEGE OF ENGINEERING