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Introduction

• This presentation covers equilibrium conversion, 
optimal feed temperature, interstage cooling, and 
the application of energy balance principles in 
reactor design.



Topics to Be Addressed

• 1. Equilibrium Conversion

• 2. Effect of Temperature on Conversion

• 3. Optimal Feed Temperature for Exothermic and 
Endothermic Reactions

• 4. Interstage Cooling Strategies

• 5. Nonadiabatic Reactor Operation and Stability

• 6. Energy Balance for PFR and CSTR Reactors

• 7. Multiple Steady States and Reactor Stability



Objectives

• 1. Understand the equilibrium conversion and its 
dependence on temperature.

• 2. Learn how feed temperature optimization 
impacts conversion.

• 3. Analyze the importance of interstage cooling in 
reactor operation.

• 4. Examine reactor stability and energy balance 
considerations.

• 5. Apply theoretical principles to practical reactor 
design.



Review: Equilibrium Conversion XAe
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Review: XAe and Temperature
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A B heat+Makes sense from Le Chatelier’s principle

Exothermic rxn produces heat→ 

increasing temp adds heat (product) & pushes rxn to left (lower conversion)

Makes sense from Le Chatelier’s principle

Heat is a reactant in an endothermic rxn→ 

increasing temp adds reactant (heat) & pushes rxn to right (higher conversion)

A heat B+

Clicker question 
material



Review: Optimum Feed Temperature

For reversible, exothermic rxns, optimize feed temperature to maximize XA

From thermodynamics
XEB
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High T0: moves XA,EB line to the right.  Rxn reaches equilibrium fast, but low XA 

Low T0 would give high XA,e but the specific reaction rate k is so small that most of the 
reactant passes through the reactor without reacting (never reach XA,e)



Review: Interstage Cooling
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Cooling, C1 C2 C3
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Each reactor 
operates 
adiabatically

• Adiabatic operation of each reactor simplifies the energy balance
• Higher feed temp- reaction reaches equilibrium quickly but XA,e is low
• Lower feed temp- higher XA,e but reaction rate is too slow to be practical
• Cooling between reactors shifts XA,EB line to the left, increasing XA



The equilibrium conversion increases with increasing temperature, so use 
interstage heating to increase the conversion

Review: Endothermic Reactions

XEB

T

heating process
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Red lines are from the 
energy balance, slant 
backwards because 
H°RX >0 for 

endothermic reaction



Nonadiabatic PFR/PBR Operation and Reactor Stability

1. T changes with distance down reactor- differential form of EB must be used
2. Multiple steady states: more than one set of conditions satisfies both the energy 

balance & mole balance



Review: Application to a SS PFR
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Negligible shaft work (ẆS=0) and adiabatic (Q=0)

a) Use TEB to construct a table of T as a function of XA

b) Use k = Ae-E/RT to obtain k as a function of XA

c) Use stoichiometry to obtain –rA as a function of XA

d) Calculate:
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Heat is added or removed through the cylindrical walls of the reactor
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TEB for PFR/PBR w/ Heat Exchanger
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Heat 
generated

Energy Balance for Tubular Reactors
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Liquid Phase Reaction in PFR

✓ Mole balance

✓ Rate law

✓ Stoichiometry
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Solve these equations simultaneously with an ODE solver (Polymath)
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Review: Nonisothermal CSTR

a) Solve TEB for T at the exit (Texit = Tinside reactor)
b) Calculate k = Ae-E/RT where T was calculated in step a
c) Plug the k calculated in step b into the design equation to calculate VCSTR

Case 1: Given FA0, CA0, A, E, Cpi, H°I, and XA, calculate T & V

a) Solve TEB for T as a function of XA

b) Solve CSTR design equation for XA as a function of T (plug in k = Ae-E/RT )
c) Plot XA,EB vs T & XA,MB vs T on the same graph.  The intersection of these 2 lines is 

the conditions (T and XA) that satisfies the energy & mass balance

Case 2: Given FA0, CA0, A, E, Cpi, H°I, and V, calculate T & XA

XA,EB = conversion determined from the TEB equation
XA,MB =  conversion determined using the design equation

XA

T

XA,EB

XA,MB
XA,exit

Texit

Intersection is T and XA that 
satisfies both equations

Isothermal CSTR: feed temp = temperature inside the CSTR
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Multiple Steady States in CSTR

• Plot of XA,EB vs T and XA,MB vs T
• Intersections are the T and XA that satisfy both the mass balance and energy 

balance
• Multiple sets of conditions are possible for the same rxn in the same reactor 

with the same inlet conditions! Reactor must operate near one of these steady 
states- this requires knowledge of their stability!

XA,MB



Consider a jacketed CSTR with constant heat capacity, negligible shaft work, 
CP=0, first order kinetics, all feeds at the same temperature (Ti0=T0), constant Ta in 
jacket, and an overall heat transfer coefficient
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A steady-state occurs when R(T) = G(T)

Bring terms that remove heat to other side of equation:



Even More Terms…
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CSTR Stability

T

G(T) R(T)

1

2

3

3 steady states satisfy the TEB and BMB

• Suppose a disturbance causes the reactor T to drift to a T between SS1 & SS2

R(T) > G(T) so T 
gradually falls 
to T=SS1

• Suppose a disturbance causes the reactor T to drift to a T between SS2 & SS3

G(T) > R(T) so T 
gradually rises to 
T=SS3

• Suppose a disturbance causes the reactor T to drop below SS1

G(T) > R(T) so T 
gradually rises to 

T=SS1

• Suppose a disturbance causes the reactor T to rise above SS3

R(T) > G(T) so T 
gradually falls to 
T=SS3

SS1 and SS3 are locally stable (return to them after temp pulse)
SS2 is an unstable- do not return to SS2 if there is a temp pulse

Temperature

G
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TT

Multiple Steady States and T0

R
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TT0,1T0,2

T0,3

T0,4

T0,5

T0,6

• Changing the inlet T will shift the steady state temperature (TS)

• Notice that the number of steady state temperatures depends on T0

Increasing T above these TS 
cause a temperature jump to 
the higher TS



• Slight increase in T above TS,green causes 

reactor T to jump to TS,cyan

Temperature Ignition-Extinction Curve
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Plot TS vs T0
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are unstable
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• Ignition temp: T where jump from TS,lower to 

TS,upper occurs

• Slight decrease in T below TS,magenta causes 

reactor T to drop to TS,yellow

• Extinction temp: T where drop from TS,upper 

to TS,lower occurs



Runaway Reaction

Ignition temperature is very important: once 
T0 exceeds Tignition, transition to the upper 
steady state will occur 

• undesirable
• dangerous

Runaway reaction
R(T) only intersects with 
upper steady state
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)
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Summary

• In this presentation, we explored the key factors 
affecting equilibrium conversion, optimal feed 
temperature, and interstage cooling. 

• We also reviewed the energy balance principles for 
different reactors and discussed the importance of 
reactor stability.

• Understanding these concepts is essential for 
optimizing reactor performance and safety.
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